Appendix B
Caustic Surfaces

A caustic surface or “burning curve” in geometric optics is a boundary
separating accessible and inaccessible regions for a given family of light rays.
The rays within that defined family can “pile up” against the boundary but they
never cross it. The boundary, therefore, is an envelope with respect to that
family. Caustics are very common in everyday life—for example, the double
crescent-shaped cusp of reflected light from a point source at the bottom of a
coffee cup or inside a wedding band.

Another caustic phenomenon is the rainbow [1], where for a given color the
scattering angle from the raindrop assumes a stationary value with respect to
the impact parameter or distance that the incident ray makes relative to the
center of the raindrop (at a local minimum of about 138 deg for the primary and
a local maximum of about 130 deg for the secondary). Since light rays are
equally likely to impinge on a raindrop at any impact distance, stationarity of
the scattering angle (which occurs for the primary at an impact distance of
about 80 percent of the radius of the raindrop) means that the light rays “pile
up” at that exit angle. And because their scattering angle and, therefore, their
phase at exit from the raindrop are stationary with respect to the impact
parameter at this angle, they all are essentially in phase and reinforce each other
in the vicinity of this stationary point upon arrival at the observer. This results
in the “caustic” phenomenon. Light rays from a raindrop at scattering angles
slightly less than the local maximum of the primary rainbow can have impact
distances that are slightly higher and lower than the impact distance that
provides the stationary scattering angle. Because these higher and lower rays
travel through the raindrop along slightly different paths, their travel times to
the observer differ, which can result in their arriving at the observer both in and
out of phase; both constructive and destructive interference can result. These
are the supernumerary bands observed with some rainbows. Supernumerary
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bands in rainbows are the analog to the amplitude and phase variability that we
observe in a radio occultation signal near a caustic.

The stationarity property of the contact point of a ray with its caustic
surface defines the mathematical form of the caustic surface. A caustic surface
is an envelope generated by a family of curves, which in the case of geometric
optics are themselves stationary phase paths. For convenience, we use here a
thin-screen framework to develop a mathematical description of a caustic
surface. Let y = f(x,h) describe a one-parameter family of ray paths, where y
is the altitude of a point on the ray path, x is its perpendicular distance from the
thin screen, and % is the parameter whose value identifies the family member.
The boundary conditions are y=#h=f(0,h) at the thin screen and
y="h = f(D,h) at the low Earth orbiting (LEO) satellite. It is straightforward
to work out the explicit functional form of f(x,4) from the thin-screen
relationship in Eq. (2.2-5). Thus,

y = f(x,h) = h-xa(a(h)) (B-1)

where in this model a(h) provides the relationship between impact parameter
and thin-screen altitude used to generate the bending angle o .

As we vary h, we generate the family of rays that satisfies the boundary
conditions at x =0 and at x = D. An envelope, if one exists, is defined by the
condition that, at its contact point with a ray, it must be tangent to that member
of the family. Also, there must be a continuum of contact points over at least a
subset of the family of rays. Let the functional form defining the envelope be
given by y = g(x), and let the contact point be designated by (x%, yT), which is

an implicit function of the parameter /. At a contact point, we require that

v =gl = roam) (B2)

As the contact point varies due to varying #, the first-order variations of g and f'
with respect to 4 are given by
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The tangency condition on the ray and the envelope at the contact point requires
that dg/de = (of/o’bc)v:xT. It follows that the position y of the ray member
must be stationary with respect to the parameter 4 at the contact point. That is,

o

=0 (B4)
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These contact and stationarity conditions in Egs. (B-2) and (B-4) enable one to
solve for the functional form of the envelope, y=g(x). The stationarity
condition in Eq. (B-4) implies that dy/dh =0 in Eq. (B-1), which is equivalent
to letting the defocusing factor £ — o, which in turn is equivalent to setting
both the first and second partial derivatives of the Fresnel phase function
[Eq. (2.5-1)] with respect to & to zero. At the contact point with the envelope,
one obtains from Eq. (B-1)

X = (B-5)

From this relation, one obtains h' = h(x%) through the definition of a(a(h)),
for example, by Egs. (A-39) and (A-40) for Case C. It follows that

v = nt) = glaf) = i) - x*a(a(h(x*))) (B-6)

which is the functional form for the envelope.

The caustic for Case C is shown (not to scale) as the limiting concave arc in
Fig. B-1, which shows the local families of the ordinary (b) rays and the
anomalous (a) rays. These are the “—” rays that are applicable below /. In this
figure, h, is the altitude where the discontinuity in the lapse rate occurs [see
also Fig. 2-7(c)]. The LEO plane is on the left side of Fig. B-1; the thin screen
is on the right side. The (a) family, whose rays begin from the thin screen in the
altitude range h, = h, = h(2), generates the envelope. These are the so-called
anomalous rays. The ordinary family of “—” rays, the (b) rays, which originates
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Fig. B-1. Limiting arc is the caustic surface generated by a
family of anomalous rays.
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from the thin screen in the altitude range A(2) = &, = h(1), does not generate an
envelope. Figure B-1 shows that one ray from each of these families intercepts
the A, plane at the same point when A (1)< A <h (2). To improve the
clarity in the figure, the local family of “+” rays originating from thin-screen
altitudes above 4, is not shown. These are the (m) rays, the original ray system
before impacting the discontinuity. Adding these (m) rays to the figure would
produce a triplet system of rays arriving at the LEO when the altitude of the
Global Positioning System (GPS)-LEO line is in the range
ho)=shg=h,Q2).

The first caustic contact is at h' = h(2) with the GPS-LEO line at
h, s = h, ;(2). This marks the birth of the ray systems (a) and (b). As the altitude
of the GPS-LEO line migrates downward in the range h, (1)< h,; < h ;(2), the
altitude of the (a) ray in the thin screen migrates upward in the range
h, =h, = h(2). The defocusing factor for the (a) ray is negative; hence, the
appellation “anomalous.” Concurrently, the altitude of the (b) ray migrates
downward in the range /(2) = h;, = h(1); its defocusing factor is positive. When
the altitude of the GPS-LEO line drops below 7, (1), only the (b) ray survives.

If a ray contacts the caustic surface along a tangential between the thin
screen and the LEO, which every member of the anomalous branch does, then
the Calculus of Variations tells us that this interior point of contact is a
conjugate point. A ray with a conjugate point, although a path of stationary
phase, is not necessarily a path along which the path delay is a local minimum;
it can be, and in this case it is a local maximum, as Fig. 2-9(c) shows.! The
anomalous branch violates the Jacobi condition from the Calculus of
Variations, which requires that the ray have no interior contact point with its
envelope. The Jacobi condition is an additional necessary condition that the ray
path must satisfy to yield a local minimum in elapsed signal time, or phase
delay. Caustics are well known in seismology [2].

" A simple example of a conjugate point is taken from the system of geodesics on a
spherical surface. Here the stationary phase path is a great circle. Consider the family of
great circle paths, all originating from the north pole and generated by varying the
longitude parameter, for example, the longitude of the path when it makes its southward
crossing of the equator. The distance from the north pole to any geographical location
on the sphere is a global minimum along a great circle route provided that the path does
not first pass through the south pole. If it does, there is an alternate family member, the
great circle path with its longitude parameter 180 deg different, that provides a shorter
distance to the same geographical location. The south pole is a conjugate surface for
this family of geodesics originating from the north pole. Unfortunately, the conjugate
surface in this example is somewhat pathological, shrinking to a single point at the
South Pole.
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